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I. Behavioral Experiments 

I.1 Research Ethics and Sample. Data were collected in five independent samples: Experiment 1: N = 

210; Experiment 2: N = 50; Experiment 3: N = 162; Experiment 4: N = 169; Experiment 5: N = 49. All 

experiments received ethics approval from Leiden University (CEP17-0829/274, CEP17-1012/341, 

CEP19-0617/350/NL43120.058.13, 2020-07-07-C.K.W.deDreu-V3-2504, and 2020-11-17-C.K.W.de 

Dreu-V1-2767). Participants were recruited from the subject pool at Leiden University (Experiments 1,2,5) 

or from the online experimental tool Prolific (Experiments 3,4), provided written informed consent and 

were debriefed and paid for participation. Experiments were incentivized and did not involve deception. 

Individual anonymity was guaranteed throughout and earnings were paid in private.  

Experiments were pre-registered prior to data collection and can be found at the following links: 

https://osf.io/vcweq; https://osf.io/wreaq; https://osf.io/qv5g9; https://osf.io/3fwnt. Important to note that in 

Experiment 5, 50 participants were invited to participate, however due to a technical failure of the scanner 

data was lost for one participant. The final sample for this experiment was thus 49 participants.  

 

Figure S1. Study design. Data was collected across five independent experiments. In Experiment 1, participants 

provided ultimatum game responses for each possible offer in five different conditions in which they were given five 

different starting endowments. This resulted in different distributions of acceptance frequencies which were used as 

feedback for Experiments 2-5. Experiments 2-5 all consisted of proposers learning the acceptance thresholds of the 

responder groups collected in Experiment 1. All changes in experiment design (from left to right) are denoted with 

red. In Experiment 2, participants completed 1 session of social and 1 session of non-social learning (24 trials each). 

In Experiment 3, we introduced the belief estimation task (restricted to offers between 0 and 15) after each learning 

session. In Experiment 4, participants completed 2 sessions of both social and non-social learning (12 trials each) 

followed by the belief estimation task (restricted to offers between 0 and 15). Finally, in Experiment 5, participants 

https://osf.io/vcweq
https://osf.io/wreaq
https://osf.io/qv5g9
https://osf.io/3fwnt


completed 2 sessions of both social and non-social learning (24 trials each) followed by the belief estimation task 

(with all possible offers).  

 

I.2 Creating Different Responder Groups. To obtain the responder populations against which our 

proposers played, we first invited 210 participants to play the Ultimatum Game (UG) as responders using 

the strategy method (Experiment 1). Responders played in five different conditions consisting of starting 

endowments with different amounts of monetary units (MU): 0MU, 5MU, 10MU, 15MU or 20MU (Fig. 

S1). These different starting endowments given to the responders resulted in different amounts of money 

being at stake on any given trial. For example, when the responder received a starting endowment of 0MU, 

all the money at stake on that trial would be in the hands of the proposer. Therefore, a 50/50 division of the 

total amount at stake on such a trial would be 10MU from the proposer. However, on a trial in which the 

responder received a starting endowment of 10MU, the total amount at stake would now be the proposer’s 

starting endowment (20MU) plus the responder’s starting endowment (10MU), totaling 30MU at stake 

altogether, and making a 50/50 division equal to 5MU instead of 10MU. On trials in which the responder 

received a starting endowment of 20MU, there was 40MU at stake altogether, and an offer of 0MU resulted 

in a 50/50 division. By manipulating the starting endowment, we were able to shift acceptance thresholds 

across groups, allowing us to ‘create’ different populations with differing underlying expectations (or 

fairness norms), akin to different conventions or norms about fairness and pro-sociality found in different 

natural groups (1–4). 

Responders were asked if they would accept all offers between 0 and 20 (Fig S2A) and their answers were 

then pooled and summed to obtain the frequency with which each offer was accepted in a given condition. 

The condition in which responders received a starting endowment of 0MU exhibited a distribution 

commonly found in the Ultimatum Game in Western samples, with offers of 10MU being accepted in most 

cases, but offers below 10MU being frequently rejected. More importantly, the conditions in which 

responders received initial starting endowments resulted in responders accepting lower offers. The resulting 

distributions of this manipulation acted as the populations against which our proposer played in experiment 

2-5. Specifically, using Matlab’s “fit” function, we fit logistic functions over the resulting distributions of 

this manipulation in order to obtain the acceptance threshold of the respective population (see Fig 1, Main 

Text). In order to obtain functions that adequately described the most relevant portion of the offer space 

(i.e., offers between 0 and 10, as offers over 10 are seldomly made by proposers), we constrained our 

function’s slopes to be positive. Specifically, we determined whether the acceptance probability of each 

successive offer was increasing as the offer amount increased. If for any successive offer, the acceptance 

probability decreased, we forced the sigmoid to continue increasing. If we did not employ this procedure, 

the logistic functions used to summarize the acceptance data would become inaccurate for offers between 



0 and 10 due to the model’s attempt to fit to declining values above 10. We selected three of the resulting 

functions (endowment 0MU, 10MU, 20MU) to provide feedback to our proposers in Experiment 2-5 (also 

see Fig 1, Main Text).  

 

 

Figure S2. Responder task. A. In Experiment 1, participants provided ultimatum game responses for each possible 

offer in five different conditions in which they were given five different starting endowments. This resulted in different 

distributions of acceptance frequencies which were used as feedback for Experiments 2-5. B. In Experiments 2-5, 

participants made offers to different responders who were grouped based on their starting endowment. Each responder 

group was demarcated by a neutral shape. C. Participants in Experiments 3-5 completed a fully incentivized 

probability matching task in which they provided estimates for the likelihood of acceptance for each possible offer 

separately for each responder group.  
 

 

I.3 Ultimatum Offers from Proposers. Participants played between two blocks (Experiment 2 and 

Experiment 4: one social and one non-social condition block) and four blocks (Experiment 3 and 



Experiment 5: two social and two non-social condition blocks) of the Ultimatum Game as proposers (Fig 

S2B). In each block, participants played (Experiment 2, 3, 5: 72 trails; Experiment 4: 36 trials) against the 

three different responder groups that differed in their acceptance function (Experiment 2, 3, 5: 24 trials per 

responder group; Experiment 4: 12 trials per responder group). Each responder group was marked with a 

neutral shape such as a circle or square and all shapes were randomized for each participant and only used 

once such that each block consisted of completely novel shapes.  

Participants were instructed that they were playing against groups of responders who had received different 

starting endowments, although they were not told what the endowments were. Hence, participants could 

anticipate that members from different groups had different expectations but not their direction or form 

(similar to meeting strangers from different groups for which actors can assume that they may differ in their 

expectations or implicit norms). 

Importantly, while in the social condition, participants were told that they were playing against groups of 

human responders who had received different starting endowments, in the non-social condition, participants 

were told that they were playing against computer generated lotteries programmed to mimic the behavior 

of participants who had received different starting endowments. In other words, they were told that they 

were playing against computers programmed to behave like humans. One trial from each block was selected 

at random for payment. 

I.4 Posterior Belief Task. After one human and one computer block (for Experiments 3-5), participants 

completed a fully incentivized belief estimation task (Fig S2C). In this task, participants were asked to 

estimate the probability each offer had of being accepted by each responder group against whom they had 

just played. On each trial, participants were presented with a shape corresponding to one of the responder 

groups from the previous blocks as well as an offer between 0 and 20. They were asked to identify, on a 

scale from 0% to 100%, how likely the given offer was to be accepted by a member of that particular 

responder group. All trials were self-paced. We used a Matching Probability/ auction mechanism to 

incentivize accuracy (5, 6), and selected one trial at random for payment. 

Specifically, participants were instructed that it was in their best interest to estimate the probability of 

acceptance that was closest to the actual responder’s true probability, since this would give them the highest 

chance of receiving extra payment. The full mechanism of how payoff was determined was as follows: For 

a given random trial, a participant’s estimate of the acceptance probability was compared to a randomly 

drawn amount between 0 and 100 (the same range available to participants). If the participant’s estimate 

was above the randomly drawn amount, then they would receive a reward with a probability equal to the 



true acceptance probability. If the participant’s estimate was below the randomly drawn amount, they would 

receive a reward with a probability equal to the randomly drawn amount. This mechanism guarantees that 

participants maximize their earnings by reporting their most precise and truthful probability estimation (6, 

7), and has been successfully employed in the past (5). 

I.5 Handling of Outliers. Our pre-registration (https://osf.io/vcweq; https://osf.io/wreaq; 

https://osf.io/qv5g9; https://osf.io/3fwnt) defined outliers as participants whose data was more than 3 

standard deviations above or below the mean for their particular dataset. More specifically, we defined 

outliers in the learning task as participants whose final offers against any of the three responder groups was 

more than 3 standard deviations above or below the mean. In the probability matching task, we defined 

outliers as subjects whose intercepts (of the fitted sigmoid indicating their estimate of the responder group’s 

acceptance function) against any of the responder groups was more than 3 standard deviations above or 

below the mean. This procedure yielded a total of 10 outliers in the learning task (Experiment 2=0; 

Experiment 3=5; Experiment 4=5; Experiment 5=0; final N=420), and 12 outliers in the probability 

matching task (Experiment 2=0; Experiment 3=4; Experiment 4=4; Experiment 5=4), with an additional 4 

subjects from Experiment 3 being excluded due to incomplete data from technical failure during the 

probability matching task (final N=364). These participants were excluded from further analyses.  

I.6 Supplementary Analysis and Results for Learning. In order to establish factors that predicted 

proposer behavior, we performed multilevel regressions using the lme4 package (8) in R (9) and applied 

Satterthwaite's degrees of freedom method to derive p-values. The regression models included offer made 

(either limited to trial 1, the final trial, or all offers) as the dependent variable and social (non-social coded 

as -1, social coded as 1) and responder group (coded numerically as -1, 0, and 1) as independent variables, 

with the intercept of the model allowed to vary randomly between participants, and participants nested 

within the experimental sample. The regression equation took the following form:  

𝑦𝑖𝑗𝑘 = 𝛽0𝑗𝑘 + 𝛽1𝑋1𝑖𝑗𝑘 + 𝑒𝑖𝑗𝑘 ,  𝑒𝑖𝑗𝑘~𝑁(0, 𝜎𝑒
2)    (level-1) 

𝛽0𝑗𝑘 = 𝛽0𝑘 + 𝑒0𝑗𝑘 ,  𝑒0𝑗𝑘~𝑁 (0, 𝜎𝑒0𝑗𝑘
2 )                (level-2)         

𝛽0𝑘 = 𝛽0 + 𝑒0𝑘,  𝑒0𝑘~𝑁(0, 𝜎𝑒0𝑘
2 )                          (level-3) 

 
where 𝑘 =  experimental sample, 𝑗 =  subject, 𝑖 = offer 

The same procedure was repeated for payoff. When analyzing experiments separately, we obtained the 

same direction and significance for all parameters, and hence collapsed across experiments in the final 

analysis (see Table S1). However, below we also provide forest plots showing the effects of each 

experiment separately for each variable of interest (see Fig S3). 

https://osf.io/vcweq
https://osf.io/wreaq
https://osf.io/qv5g9
https://osf.io/3fwnt


Table S1: Multi-level regression on offers and payoff 

 

 Initial Offer Avg. Offer Final Offer Payoff 

 B (se) B (se) B (se) B (se) 

    
 

Intercept 8.013 (0.135) *** 7.132 (0.218) *** 7.038 (0.212) *** 10.469 (0.079) *** 

Non-social vs. Social 0.416 (0.040) *** 0.212 (0.009) *** 0.173 (0.039) *** -0.055 (0.019) ** 

Resp. Group 0.068 (0.049)  -0.937 (0.011) *** -1.343 (0.047) *** 2.910 (0.024) *** 

NS/S  Resp. Group  0.036 (0.049)  0.088 (0.011) *** 0.103 (0.047) * -0.178 (0.024) *** 

Observations 420 420 420 420 

Note.  *** p < 0.001, ** p < 0.01, * p < 0.05, # p < 0.10 (two-tailed tests). Analyses based on pooled data of four experiments 

(see Methods, main Text). 

 

 

 

Figure S3. Behavioral results per experiment. Initial offer (A), average offer (B), final offer (C), and average payoff 

(D). Each square represents the regression coefficient in one of our experiments, diamonds represent effects from all 

experiments pooled together, error bars represent 95% confidence intervals. Error bars that no not cross the vertical 

dotted line indicate a significant effect at p < 0.05. 

  



To exclude the possibility that any results could be caused by an alteration of behavioral strategies following 

the elicitation of beliefs, we re-ran the above analyses excluding all blocks of trials that followed our belief 

estimation task. This resulted in half of all trials being eliminated for Experiments 3-5 (Experiment 2 did 

not include the belief elicitation task). The pattern of results presented above remained when excluding 

these trials. 

I.7 Risk-aversion in Ultimatum Bargaining. An alternative to inequality aversion may be risk aversion. 

This would assume that individuals with strong risk aversion make more generous opening offers and that 

this is especially the case when interacting with human (compared to computer) responders.  If true, risk 

rather than inequality aversion may explain the differential learning of responder group acceptance 

thresholds. To examine this alternative possibility, participants in both Exp. 2 and 5 were, at the end of the 

entire experimental session, asked to complete the Eckel-Grossman Risk Task (10). In this task, participants 

are presented with six gambles, each of which results in either a high or a low payout with equal probability 

(i.e., 50%). The six gambles differ in their high and low payouts, thereby systematically varying the level 

of risk between gambles. For example, the safest gamble has a high and low payout of 28MU, while the 

riskiest gamble has a high payout of 70MU and a low payout of 2MU. Participants are asked to select only 

one gamble, and this selection is used as a measure of their risk preference. 

We computed regression models with Initial Offer as the criterion, and the social/non-social treatment, risk-

preference, and their interaction as predictors. For experiment 2, we found the main effect for treatment (p 

= 0.05), no effect for risk-preference (p = 0.93), and no interaction effect (p = 0.59). For the fMRI 

experiment 5, we likewise found the main effect for treatment (p = 0.009), no effect for risk-preference (p 

= 0.96), and no interaction effect (p = 0.75). From these results, we infer that risk-preferences neither 

systematically predict initial offers nor provide evidence that risk preferences influence initial offers of 

participants. Importantly, differences in risk preferences also fail to explain the different offer-rates we 

observe across the social/non-social treatment. As such, risk preferences do not provide an alternative 

mechanism for the treatment effect in our datasets. 

I.8 Supplementary Analysis and Results – Probability Matching Task. To test for differences in 

posterior beliefs, we first submitted our participants’ raw estimates of each offer’s acceptance probability 

to multilevel regressions. The regression models included the estimated probability that an offer would be 

accepted as the dependent variable and offer (0 through 20), social (non-social coded as -1, social coded as 

1) and responder group (coded numerically as -1, 0, and 1) as well as the interaction between social and 

responder group as independent variables, with the intercept of the model allowed to vary randomly 

between participants, and participants nested within experimental sample. Table S2 presents results from 



this analysis from all experiments. 

As an alternative to the above (model-free) regressions, we further employed a model-based approach. We 

used MATLAB’s (Mathworks) glmfit function in order to fit sigmoid functions to each subject’s raw 

estimate of acceptance likelihood for each offer (see Main Text, Fig 4B). This procedure resulted in, for 

each subject, a slope and intercept value for each responder group in both the social and non-social 

conditions. These intercepts provide an indication of each subject’s estimate of each responder group’s 

acceptance function. We then submitted these intercepts to paired t-tests in order to probe for differences 

between social and non-social beliefs. Based on the model simulations, we expected most pronounced 

differences in the most lenient responder culture (responder endowment = 20). Table S3 shows the results. 

Table S2: Multi-level regression on estimates of offer acceptance 

 B (se) 

Intercept 6.400 (3.811)  

Offer 5.794 (0.022) *** 

Non-social vs. Social -0.154 (0.108)  

Resp. Group 5.114 (0.132) *** 

NS/S  Resp. Group  -0.319 (0.132) * 

Observations 364 

 

Note. *** p < 0.001, ** p < 0.01, * p < 0.05, # p < 0.10 (two-tailed tests). Analyses based on pooled data of three experiments 

(see Methods, main Text). 

 

Table S3: t-tests on intercepts from model-based analysis 

 

 

Social mean (se) Non-social mean (se) t-stat 

Resp. Group A -4.050 (0.154) -3.953 (0.155) -0.771 

Resp. Group B -3.361 (0.109) -3.493 (0.178) 0.991  

Resp. Group C -3.038 (0.141) -2.741 (0.145) -2.290 * 

Observations 364 364 364 

Note. All contrasts are between non-social and social conditions. *** p < 0.001, ** p < 0.01, * p < 0.05, # p < 0.10 (two-tailed 

tests). Analyses based on data of three experiments (see Methods, main Text). 

 

  



Table S4: t-tests on slopes from model-based analysis 

 

Social mean (se) Non-social mean (se) t-stat 

Resp. Group A 0.564 (0.023) 0.538 (0.020) 1.524 

Resp. Group B 0.572 (0.023) 0.581 (0.028) -0.451  

Resp. Group C 0.609 (0.034) 0.595 (0.034) 0.481 

Observations 364 364 364 

Note. All contrasts are between non-social and social conditions. *** p < 0.001, ** p < 0.01, * p < 0.05, # p < 0.10 (two-tailed 

tests). Analyses based on data of three experiments (see Methods, main Text). 

 

 
Table S5: t-tests on estimates of offer acceptance for all offers 

Offer Resp. Group A Resp. Group B Resp. Group C 

 

Observations 

 t-stats t-stats t-stats 
 

 behavior model behavior model behavior model 
 

0 -1.837 # 0.42 -2.655  ** -1.578 -2.838  ** -2.866  ** 364 

1 -1.002 0.512 -1.249 -1.256 -3.241  ** -2.686  ** 364 

2 -0.775 0.496 -1.116 -0.814 -2.311  * -2.371  * 364 

3 0.123 0.402 0.038 -0.29 -1.828 # -2.106  * 364 

4 0.874 0.337 0.706 0.166 -1.2 -1.785 # 364 

5 1.602 0.368 1.2 0.388 -1.026 -1.313 364 

6 0.927 0.422 0.339 0.358 0.129 -0.889 364 

7 -0.004 0.409 0.68 0.297 -1.14 -0.533 364 

8 -0.436 0.46 -1.33 0.284 0.242 -0.26 364 

9 -0.382 0.527 -0.686 0.23 -0.619 -0.183 364 

10 0.996 0.461 0.088 0.102 -0.351 -0.252 364 

11 -0.376 0.316 -0.343 -0.045 0.909 -0.367 364 

12 1.225 0.138 0.765 -0.188 -0.054 -0.481 364 

13 1.204 -0.037 0.484 -0.325 0.955 -0.572 364 

14 0.601 -0.164 1.38 -0.459 0.925 -0.626 364 

15 0.907 -0.229 1.019 -0.585 0.754 -0.642 364 

16 1.634 -0.72 0.6 0.986 2.404  * -0.621 45 

17 0.621 -0.69 0.969 0.88 -0.894 -0.564 45 

18 1.702 # -0.677 0.87 0.762 0.998 -0.507 45 

19 -0.281 -0.679 -1.195 0.637 -0.502 -0.449 45 

20 -0.754 -0.694 1.508 0.509 -0.097 -0.39 45 

Note. All contrasts are between non-social and social conditions. *** p < 0.001, ** p < 0.01, * p < 0.05, # p < 0.10 (two-tailed 

tests). Analyses based on data of three experiments (see Methods, main Text). 



 

Figure S4. Probability matching results for all experiments. Shown are the results for analyses on the intercept (A) 

as well as the average offer for responder group C (B), separated by experiment. Each square represents the mean 

difference in one individual experiment, diamonds represent effects from all experiments pooled together, error bars 

represent 95% confidence intervals. Error bars that do not cross the vertical dotted line indicate a significant effect at 

p < 0.05.  

 

II. Computational Model and Simulations 

II.1 Model Fitting and Parameter Optimization. The classic Maximum Likelihood (ML) approach 

estimates model parameters θM by finding the values which minimize the negative logarithm of the 

likelihood (nLL) of observed choices D given the model M and parameter values nLL = –log(P(D│M,θM)). 

Alternatively, model parameters θM can be estimated by finding the values which minimize the negative 

logarithm of the posterior probability (nLPP). This term is computed as nLPP = –log(P(θM│D,M)) ∝ –

log(P(D│M,θM)) – log(P(θM│M))], where P(D│M,θM) is the likelihood of the data (i.e., the observed offer) 

given the considered model M and parameter values θM, and P(θM│M) is the prior probability of the 

parameters. This Maximum A Posterior (MAP) approach can be used to regularise parameters. It avoids 

that some parameters take extreme values or constrain parameters to some theoretical bounds, by choosing 

appropriate prior distributions for the parameters P(θM│M) – see also (11). Here we used a MAP approach 

with an L-BFGS-B algorithm (12) for optimization of the parameter search, as implemented in Matlab’s 

fmincon function, initialized at multiple, random starting points of the parameter space (10 iterations).  

Following modelling state-of the art practices (13), we performed a parameter recovery analysis to verify 

that it was possible to estimate the model parameters (see section II.2). We also compared the parameters 

obtained with the nLL and MAP approaches to assess if and how the chosen prior distributions biased the 

parameter estimation (see section II.3). 



II.2 Model Identifiability & Parameter Recovery. Following standard practices in the field of 

computational modelling, we performed both model identification and parameter recovery analyses (13). 

For the parameter recovery analysis, we focused on our candidate model, which includes the inequality 

aversion in the social condition and, hence, has 6 parameters (β, μ1, μ2, Σ1, Σ2, ω). We ran 10 simulations, 

each containing 50 synthetic subjects. Task properties and contingencies used for the simulations were 

following and, therefore, identical to the fMRI study design (288 trials: 2 social conditions × 3 cultures × 

24 trials × 2 repetitions). We used randomly sampled learning model parameters from the same prior 

distributions used to calculate LPP in model fitting, which roughly approximate the distribution of 

parameters estimated from actually fitting the model to our actual participants (see Main Text). We then 

assessed the parameter recovery in two ways: first, we ran a robust regression between the input parameters 

and the estimated parameters for all synthetic subjects (500 = 10 × 50). We then used the estimated 

regression parameters (intercept B0 and slope B1) to assess how well our parameter estimation procedure 

can actually retrieve specific parameter values (Fig S5A). In the case of perfect estimation, those 

regressions should feature intercepts close to 0 and slopes close to 1 (B0 = 0 and B1 = 1), with a maximally 

explained variance (R2 ~ 1).  

Next, we computed the Pearson correlation between the parameters used to generate the data and the 

parameters estimated in each simulation. We then averaged the R and R2 over the 10 simulations and plotted 

those as confusion matrices (Fig S5B) to assess how well our parameter estimation procedure captures the 

inter-individual differences in a typical n = 50 experiment (on-diagonal terms), and how much 

multicollinearity between the different parameters is produced by the estimation procedure (off diagonal 

terms). In the case of perfect parameter estimation, these confusion matrices should feature diagonal terms 

close to 1 and off-diagonal terms close to 0. Overall, our results suggest that our model parameters are 

satisfactorily estimated by our fitting procedure (Fig S5). 



 
Figure S5. Parameter recovery analysis. A. Robust regressions. Data from 500 synthetic participants (10 

simulations × 50 individuals) were simulated with the alternative model (with IA). The 6 estimated parameters per 

participants were then regressed against the true parameters used for simulating the data, using robust regressions. 

Results show very good identifiability, with robust regression intercepts close to 0, robust regression slopes close to 

1 and high statistical significance (all p-values close to Matlab’s precision – i.e. reported as 0). Each dot represents a 

synthetic individual. The black dotted lines represent the identity line and the thick, blue, continuous lines the best 

linear fits (robust regression). The grey densities represent the probability distributions used to sample the parameters. 

B. Pearson correlations. The confusion matrices represent summary statistics of the correlations between parameters, 

estimated over 50-subjects simulations, and averaged over the 10 simulations. Diagonal: correlations between 

simulated and estimated parameters. Off diagonal: cross correlation between estimated parameters. Left: Pearson 

correlation (R). Right: explained variance (R2). 

 

For the model identification analysis, we focused on the comparison between our candidate model and a 

null model that does not includes the inequality aversion in the social condition, hence only possesses 5 

parameters (β, μ1, μ2, Σ1, Σ2, ω). We ran 10 simulations, each containing 50 synthetic subjects, with each of 

those two models, randomly sampling learning model parameters from our prior distributions. Then, for 

each of the two generating model scenarios, we fitted both models of the model space, computed the model 

comparison metric (the Laplace Approximation to Model Evidence) with the estimated parameters, and ran 



a Bayesian model comparison between those 2 models. We then computed the conditional probability that 

a model fits best given the true generative model p(est.|sim.), and the conditional probability that the data 

was generated by a specific model, given that the model was observed as providing the best fit to the 

generated data p(sim.|est.). In the case of perfect identification, these confusion matrices should feature 

diagonal terms close to 1 and off-diagonal terms close to 0. Overall, our results show a good identification 

of our models (Fig S6). 

 

Figure S6. Model identifiability analysis. Data from 50 synthetic participants were simulated with each of our two 

models (null model (#1) and alternative model (#2)). Bayesian model selection was used to identify the most probable 

model generating the data, using model exceedance probability. This procedure was repeated 10 times. We then 

computed the conditional probability that a model fits best given the true generative model p(est.|sim.) (left), and the 

conditional probability that the data was generated by a specific model, given that the model was observed as providing 

the best fit to the generated data p(sim.|est.) (right).  

 

II.3 Parameter Estimates. In this section, we provide a full description of the model parameters 

distributions estimated from our data (Fig S7). Although the use of priors or other hierarchical estimation 

procedure is often portrayed as a good practice and an efficient way to regularize parameters (11), there is 

often little appreciation of how much the use of those techniques impact the estimation of parameters. Here 

we provide such an estimation, by comparing the distribution of parameters obtained using a simple 

maximum Likelihood (nLL) estimation procedure and the value of parameters obtained using a maximum 

A Posteriori (MAP) estimation procedure with our chosen prior distributions which were as follows: inverse 

temperature parameter (β) was sampled in a Gamma distribution defined by a shape a and scale b parameter 

(a = 1.2, b = 1).  Intercept of the belief function (μ1) was sampled in a Normal distribution defined by mean 

(μ) and standard deviation () (μ = -3,  = 1). The slope of the belief function (μ2) was sampled in a Gamma 

distribution defined by a shape a and scale b (a = 2, b = 0.25). The variance around the intercept of the 



belief function (Σ1) was sampled in a Gamma distribution defined by a shape a and scale b (a = 1.2, b = 1). 

The variance around the slope of the belief function (Σ2) was sampled in a Gamma distribution defined by 

a shape a and scale b (a = 1.2, b = 0.1). Finally, the weight of inequality aversion (ω) was sampled in a 

Gamma distribution defined by a shape a and scale b (a = 1.2, b = 0.1). Our result show that, at the 

population level, the inclusion of the prior in the MAP procedure does not appear to distort the estimation, 

compared to the nLL procedure (Fig S7). 

 

 

 

Figure S7. Parameter distributions. For each of our six model parameters, the left panel is a violin plot of the 

parameters estimated with the MAP procedure in our full sample (n = 420). In the violin plots panels, the white dots 

represent the sample median, the horizontal green bar the sample mean, the thick central line indicates the 25-75% 

quantiles, and the thin central line indicates the 5-95% quantiles. The light-colored dots represent all individual 

datapoints. For each of our six model parameters, the right panel is a histogram depicting the distribution of the 



parameters estimated with the MPA (green-fill histogram) and the nLL procedure (green-edge histogram). The light 

grey curve indicates the prior distribution used in the MAP procedure. 
 

II.4 Learning Model – Simulations & Falsification. In this section, we detail the result of simulations 

obtained with our null and our alternative model – a procedure also known as model falsification (14). The 

idea is to show that our alternative model reproduces specific qualitative patterns of behavior that the null 

model does not. To do so, we first fitted the two models with the MAP procedure. We then simulated 420 

synthetic individuals with each model, using the vector of estimated parameters from each of the 420 

participants in our full sample. We then submitted the simulated behavior to the same analyses as the 

participants behavior, to assess which model better captures the key behavioral patterns observed in our 

task and conditions/treatments. This means the same hierarchical regressions were estimated. The full 

results of this are provided in Table S6, with results from behavioral data likewise included to help facilitate 

comparison between behavioral and model-simulated results.  

Table S6: Multi-level regression on offers and payoff 

 

 Initial Offer Avg. Offer Final Offer Payoff 

 B (se) B (se) B (se) B (se) 

     

Non-social vs. Social      

Data 0.416 (0.040) *** 0.212 (0.009) *** 0.173 (0.039) *** -0.055 (0.019) ** 

Null model -0.008 (0.050)  -0.009 (0.009)  -0.010 (0.038)  0.008 (0.010)  

Alternative model 0.163 (0.046) *** 0.190 (0.009) *** 0.118 (0.038) **  -0.067 (0.010) *** 

     

Resp. Group      

Data  0.068 (0.049)  -0.937 (0.011) *** -1.343 (0.047) *** 2.910 (0.024) *** 

Null model -0.016 (0.061)  -1.023 (0.011) *** -1.526 (0.046) *** 1.871 (0.012) *** 

Alternative model -0.040 (0.057)  -1.009 (0.011) *** 

 

-1.522 (0.047) *** 1.790 (0.012) *** 

     

NS/S  Resp. Group     

Data  0.036 (0.049)  0.088 (0.011) *** 0.103 (0.047) * -0.178 (0.024) *** 

Null model -0.059 (0.061)  -0.006 (0.011)  0.028 (0.046)  0.020 (0.012)  

Alternative model 0.006 (0.057)  0.071 (0.011) *** 0.093 (0.047) * -0.131 (0.012) *** 

     

Observations 420 420 420 420  

Note. *** p < 0.001, ** p < 0.01, * p < 0.05, # p < 0.10 (two-tailed tests). Analyses based on pooled data of four experiments (see 

Methods, Main Text). 

  



II. 5 Individual Time-series. In this section, we provide a more detailed overview of our computational 

model, as well as its ability to capture different individual patterns of behavior. To do so, we focused on 

individual behavioral time series and created a graphical representation that allows a visual comparison of 

how well model predictions (i.e., likelihood of potential offers) match actual behavior (i.e., actual offers 

made), as well as how the succession of accept/reject experiences shape the trajectories of those variables 

in all conditions. We selected two participants from the fMRI sample, who exhibited prototypical behavior. 

 

Figure S8. Individual time series and model prediction (1). Each panel represents the time series and model 

predictions of one fMRI cohort individual’s behavior (i.e., investment as a function of trial number) for one specific 

condition (i.e., opponent group A: red, B: purple; C: blue) in the social (color-filled symbols) or non-social (white-

filled symbols) treatment. Because the design featured two repetitions, this led to 12 panels (3 opponents × 2 treatments 

× 2 repetitions), the upper line of each condition consisting of the first repetition and the lower line the second 

repetition. In each panel, the dot symbols represent the actual behavior (i.e., observed investment), at each trial. 

Colored and white symbols indicate that the offer was accepted by the opponent, and black symbols that the offer was 

rejected by the opponent. One can see that investments tend to decrease after accepted offers, and increase after 

rejected offers. The color-scaled background indexes the likelihood of observing each potential investment at each 

trial, as computed by our alternative model, after fitting the individual parameters to each subject’s behavior (see 

Methods, Main Text). Yellow-color indicate high likelihood, and blue low likelihood. One can observe that the 

likelihood surface is yellow in the vicinity of the observed behavior and blue elsewhere, indicating that the model 

nicely captures the dynamic of the behavior of this specific subject. The chosen subject here features a fairly 



prototypical behavior, with a characteristic learning pattern (offers increase against opponent A and decrease against 

opponent C) and inequality aversion (offers are higher in the social than in the non-social condition). It is notable that 

against the most lenient opponent (C: blue), the offers at the end of learning are still significantly higher in the social 

than in the non-social condition. 

 

 

 
 
Figure S9. Individual time series and model prediction (2). For a detailed caption, see Fig S8. The chosen subject 

here exhibits a different strategy: a characteristic learning pattern in the non-social condition only (offers increase 

against opponent A, and decrease against opponent C). The behavior in the social condition is dominated by inequality 

aversion: there is no learning, and all offers are close to a fair split of the endowment (10). Despite the strategy of this 

individual being very different from Fig S8, our model was able to adjust to the data to fully capture this alternative 

pattern of behavior. 

 

II.6 Efficiency. To formalize the intuition that inequality aversion leads agents to become overly generous 

and to make inefficient (i.e., uninformative) offers when interaction partners have (unobservable) low 

acceptance thresholds and would accept more self-serving actions, we adopted the A-optimality criterion 

from optimal design theory. A-optimality criterion can indeed be used to assess the efficiency of an option 

O to estimate the receiver’s parameters. Formally, an A-optimal offer minimizes the trace of the inverse of 



the Fisher information matrix – which corresponds to the reciprocal of the variance of the estimator. In 

other words, efficient offers use current beliefs to evaluate which offer would generate feedback that would 

be most informative to get accurate estimates of posterior beliefs. Thereby, we computed our measure of 

offer-efficiency as the negative trace of the posterior variance-covariance matrix on parameters of the 

acceptance function −𝑡𝑟(𝛴𝑡+1). Applied to the simulations reported in the main text (Main Figure 1-2), 

these new analyses show that the presence of inequality aversion in the social condition indeed leads agents 

to make more inefficient (i.e., uninformative) offers (Figure S10 AB). This pattern develops over time and 

particularly worsen in the most lenient responder group (Figure S10 C). 

 
Figure S10. offer efficiency. A. Optimal offer for Utility vs Efficiency. Top panel: at a certain trial, an agent holds a 

certain belief about the acceptance function of the responder group. Middle panel: This function can be used to derive 

the offer that maximizes the agent’s expected gain (non-social condition, red), or its expected utility − i.e., expected 

gain + inequality aversion− (social condition, brown-green). Bottom panel: given the agent’s current belief, one can 

also compute the efficiency of different offers (green). In this case, the offer that maximizes the expected utility is far 

less efficient than the most efficient offer and also less efficient than the offer that maximizes the expected gain. 

Colored, vertical dashed lines indicate offers that maximize the respective colored functions (red: expected gain; 

brown-green: expected utility; green: efficiency) B. We computed the efficiency of the offers made in the simulated 

behavior (Main Figure 2). Left panel: Results show that the offer mean efficiency is higher without the inequality 

aversion term (i.e., in non-social context) than with the inequality aversion term (i.e., in the social context). Right 

panel: consequently, the distance to the most efficient offer is higher with the inequality aversion term (i.e., in the 

social context) than without the inequality aversion term (i.e., in non-social context). In both cases, the inefficiency is 

highest in the most lenient responder group (blue). C. Time series of offer efficiency. The time-course depicts the 

evolution of the offer efficiency generated from the simulated behavior (Main Figure 2) in all conditions (both non-



social and social, top) and as a function of the social condition (social – non-social; right), for the three different 

responder groups, depicted with different colors (red = responder group A; purple = responder group B; blue = 

responder group C). Whereas the top graph illustrates that learning generally improves the efficiency of offer made 

over time, the bottom graph specifically shows the effect of the inequality aversion term (present in the social, and not 

in the non-social condition), on the efficiency of the offers made to the different responder groups. 

II.7 Gaussian-Newton Algorithm. The variational-Laplace scheme was implemented using the routines 

of the VBA toolbox (15). Note that, under certain circumstances (when the Hessian is badly conditioned), 

the convergence of the standard Newton optimization algorithm used by default in the VBA toolbox is not 

guaranteed. We therefore modified the Gauss-Newton optimization algorithm, according to the following 

reasoning. 

Let ( ):f x f x→  be a function, whose maximum *x  we want to identify. 

First, consider the following 2nd-order Taylor expansion of ( )f x : 
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where 0x  is some initial guess of the unknown maximum *x , ( )0J x  is the gradient of f  wrt x , and 

( )0H x  is its Hessian. 

Now let ( ):f x f x→  be defined as:  

( ) ( ) ( )( ) ( ) ( )( )0 0 0 0 0 0

1

2

T
f x f x J x x x x x H x x x= + − + − −

     (2) 

A standard Newton optimization step simply assumes that ( )f x  is a good approximation of ( )f x  in the 

neighborhood of 0x , and thus proposes to move from 0x  to *x , which is (by definition) the optimizer of 

f . 

First, note that the gradient of f  is given by: 

( ) ( )( )0 0 0

f
x x H x x x

x


= − + −

        (3) 

If *x  is the optimizer of f , then by definition: 
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           (4) 

And therefore (setting *x x=  in Equation 3): 



( ) ( )( ) ( ) ( )
1

0 0 0 0 0 00 * *J x H x x x x x H x J x
−

= + −  = −
     (5) 

This yields the standard Newton optimization algorithm, whose pseudo code is given below: 

Initialize 0*x x=
 

While [convergence criterion is not met] 

 Update 
( ) ( )

1
* * * *x x H x J x

−
 −

 

End 

This, however, can diverge when the Hessian is badly conditioned. 

The following modified Gauss-Newton algorithm actually performs much better in most circumstances: 

Initialize 0*x x=
 

While [convergence criterion is not met] 

 Evaluate cost function before the step: ( )* *I f x=  

 Derive Gauss-Newton (double) step: ( ) ( )
1

2 * *x H x J x
−

 = −   

 While [cost function after the step does not decrease] 

  Halve step: 
2x x = 

 

  Evaluate cost function after the step: ( )*I f x x= +  

 End 

 Update * *x x x +  

End 

 

Example for a binomial likelihood with gaussian priors. 

Let ( )f x  be the following log posterior probability density: 

( ) ( ) ( ) ( )( ) ( ) ( )1

0 0 0

log (bernouilli) likelihood term 
log (Gaussian) prior term

1
log 1 log 1

2

T
f x y s g x y s g x x x −= + − − − −  −

   (6) 

where x  is some hidden cause of the data that controls its first-order moment through some (possibly 

nonlinear) function ( )g x  mapped through the standard sigmoid : 1 1 xs x e−→ + . 

First, note that the function ( )f x  can be re-written as: 
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Then the gradient of ( )f x  is given by: 
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And its Hessian can be approximated as: 

( )

( )( ) ( )

( ) ( )( ) ( )( )

( ) ( )( )

2

2

1

0 0

2
1

02

1

0

1

1

T

T

f
H x

x

g
y s g x x

x

g g g
s g x s g x y s g x

x x x

g g
s g x s g x

x x

−

−

−


=



= − − −



  
= − − + − −

  

 
 − − −

      (9) 

if the mapping ( )g x  is weakly nonlinear (and thus its higher-order derivative tends to zero). 

Note that the first Gauss-Newton iteration thus writes: 

( ) ( ) ( ) ( )( ) ( )( )
1

1 1

0 0 0 0 0 0 01

T
g g g

H J s g s g y s g
x x x

      

−

− −
   

 − = − + − 
      

if one initializes the optimizer with the prior mean (i.e., 0*x = )! 

 
  



III. Neuro-Imaging 

III.1 Research Ethics, Sample, and Exclusion Criteria. The neuroimaging experiment (Experiment 5) 

was approved by the Psychology Research Ethics Board of Leiden (CEP19-0617/350) and the Leids 

Universitair Medisch Centrum Medical Ethics Committee (NL43120.058.13). We recruited 50 participants 

between the ages of 18 and 35 with normal or corrected to normal vision who had a good command of 

written and spoken English and who adhered to normal safety guidelines for MRI research (i.e., no metal 

implants or recently applied tattoos). 

III.2 Experimental Procedures and Tasks. All neuroimaging was conducted at the Leiden Institute for 

Brain and Cognition 3T Philips Achieva MRI scanner at the Leids Universitair Medisch Centrum. On 

arrival participants were escorted to a private interview room where they would read the information 

brochure and sign the informed consent. After this, a researcher would verbally go through a medical safety 

checklist in order to ensure that the participant could enter the MRI scanner safely. After the medical safety 

checklist, participants completed the instructions for the tasks. The instructions were presented on a laptop 

and included test questions to ensure that participants understood the instructions fully. The participant was 

only allowed to proceed once they had answered each test question correctly. A researcher was always right 

outside the door in case they had any clarification questions. After participants had completed the 

instructions for the task, they were escorted into the MRI scanner room and put supine into the scanner, at 

which point the experimental tasks began.  

III.3 Data Acquisition and Pre-processing. Neuroimaging was performed using a standard whole-head 

coil. Participants completed four runs, during which 400 T2*-weighted whole-brain echo-planar images 

(EPIs) were collected (TR = 2.2 s; TE = 30 ms, flip angle = 80°, 38 transverse slices, 2.75 × 2.75 × 2.75 

mm +10% interslice gap). The first five dummy scans were discarded to allow for equilibration of T1 

saturation effects. After each functional run, a B0 field map was acquired. Additionally, a 3-D T1-weighted 

scan was acquired (TR = 9.8 ms; TE = 4.6 ms, flip angle = 8°, 140 slices, 1.166 × 1.166 × 1.2 mm, FOV = 

224.000 × 177.333 × 168.000). 

Neuro-imaging data were preprocessed using FMRIPREP version 1.0.8 (16), a Nipype (17) based tool. 

Each T1w (T1-weighted) volume was corrected for INU (intensity non-uniformity) using 

N4BiasFieldCorrection v2.1.0 (18) and skull-stripped using antsBrainExtraction.sh v2.1.0 (using the 

OASIS template). Brain surfaces were reconstructed using recon-all from FreeSurfer v6.0.1 (19), and the 

brain mask estimated previously was refined with a custom variation of the method to reconcile ANTs-

derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle (20). Spatial 



normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c (21) was performed 

through nonlinear registration with the antsRegistration tool of ANTs v2.1.0 (22), using brain-extracted 

versions of both T1w volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-

matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL v5.0.9) 

(23). 

Functional data was motion corrected using mcflirt (FSL v5.0.9) (24). This was followed by co-registration 

to the corresponding T1w using boundary-based registration (25) with 9 degrees of freedom, using 

bbregister (FreeSurfer v6.0.1). Motion correcting transformations, BOLD-to-T1w transformation and T1w-

to-template (MNI) warp were concatenated and applied in a single step using antsApplyTransforms (ANTs 

v2.1.0) using Lanczos interpolation. Physiological noise regressors were extracted applying CompCor (26). 

Principal components were estimated for the two CompCor variants: temporal (tCompCor) and anatomical 

(aCompCor). A mask to exclude signal with cortical origin was obtained by eroding the brain mask, 

ensuring it only contained subcortical structures. Six tCompCor components were then calculated including 

only the top 5% variable voxels within that subcortical mask. For aCompCor, six components were 

calculated within the intersection of the subcortical mask and the union of CSF and WM masks calculated 

in T1w space, after their projection to the native space of each functional run. Frame-wise displacement 

(27) was calculated for each functional run using the implementation of Nipype. Many internal operations 

of FMRIPREP use Nilearn (28), principally within the BOLD-processing workflow. For more details of 

the pipeline, see: http://fmriprep.readthedocs.io/en/latest/workflows.html.  

III.4 General Linear Model and Supplementary Results. Preprocessed functional data was then 

analyzed with FSL (Oxford Centre for Functional MRI of the Brain (FMRIB) Software Library; 

www.fmrib.ox.ac.uk/fsl). For all general linear models (GLMs), at the first level (within participants within 

runs), each participants’ blood oxygen level dependent (BOLD) data was spatially smoothed with 5mm 

FWHM gaussian kernel, high pass temporal filtered, film pre-whitened, and convolved with the canonical 

double gamma hemodynamic response function. We then constructed the following GLMs:  

GLM1 tested for effects of our BPL model’s choice prediction error (both components in aggregate) as well 

as expected utility (both expected gain and inequality aversion in aggregate). GLM1 contained the 

following regressors: “responder”: the time-phase when the shape representing the different responder 

population was presented; “expected utility”: the “responder” regressor modulated by the expected utility 

of our BPL model and orthogonalized with respect to “responder”; “feedback”: the time-phase when the 

response of the opponent was presented to the subject; “choice prediction error”: “feedback” modulated by 

the prediction error from our BPL model, orthogonalized with respect to “feedback”. 

http://fmriprep.readthedocs.io/en/latest/workflows.html
http://www.fmrib.ox.ac.uk/fsl


GLM2 tested for effects of our BPL model’s choice prediction error with the separate components (choice 

prediction and actual outcome) as separate regressors. GLM2 contained the following regressors: 

“feedback”: the time-phase when the response of the opponent was presented to the subject; “choice 

prediction”: “feedback” modulated by the predicted likelihood of offer acceptance, as dictated by the 

parameters of our BPL model, orthogonalized with respect to “feedback”; and “outcome”, “feedback” 

modulated by whether the offer was accepted (denoted with 1) or rejected (denoted with 0), orthogonalized 

with respect to “feedback”. A true prediction error should be expressed as a positive correlation with the 

outcome, and a negative correlation with the prediction thereof (29, 30).  

GLM3 tested for effects of a reward prediction error—derived from our BPL model’s choice prediction 

error—with the separate components (reward prediction and actual payoff) as separate regressors. GLM3 

contained the following regressors: “feedback”: the time-phase when the response of the opponent was 

presented to the subject; “reward prediction”: “feedback” modulated by the predicted payoff given the 

choice prediction derived from the parameters of our BPL model, orthogonalized with respect to 

“feedback”; and “payoff”, “feedback” modulated by the actual payoff received, orthogonalized with respect 

to “feedback”.  

Finally, GLM4 tested for effects of our BPL model’s expected utility parameter with separate components: 

expected gain and (in the social condition) inequality aversion. GLM4 contained the following regressors: 

“responder”: the time-phase when the shape representing the different responder population was presented; 

“expected gain”: the “responder” regressor modulated by the expected gain of our BPL model and 

orthogonalized with respect to “responder”; “inequality aversion” (only in the social condition): the 

“responder” regressor modulated by the inequality aversion of the given offer ((endowment – offer)^2); 

“feedback”: the time-phase when the response of the opponent was presented to the subject; “choice 

prediction error”: “feedback” modulated by the prediction error from our BPL model, orthogonalized with 

respect to “feedback”. Note that because each regressor was z-scored within each run within each 

participant (see below), we did not need to include the subject-specific inequality aversion weight. 

Importantly, and as recommended best practice (31), all parametric regressors were normalized by z-scoring 

the weighted values within runs and participants. Therefore, every participant’s parametric regressor had a 

mean of 0 and a standard deviation of 1. We also included temporal derivatives for all of these regressors, 

six motion parameters (three rotation and three translation), framewise displacement (32), and six 

anatomical principal components (26). Furthermore, analyses for all GLMs averaged within participants 

within runs at the first level of analysis, averaged within participants across runs at the second level of 

analysis—which is also where social/non-social contrasts were implemented—and across participants at 



the third level of analysis. Significance was determined at the group level with FSL’s FLAME 1 with 

standard cluster forming threshold of Z > 3.1 and cluster significance at p < 0.01. We utilized the default 

settings within FSL, which applies random field theory to implement family-wise error correction at the 

cluster level. Table S7-S11 present the significant results from our analysis concerning the latent parameters 

of our BPL model. 

 

Table S7: Positive correlations of prediction error with neural activation 

Region cluster size (voxels) X (mm) Y (mm) Z (mm) Z-stat max 

R Precentral Gyrus 2628 3 -16.5 55.1 6.17 *** 

PCC 1070 -5.25 -55 18.8 6.46 *** 

VMPFC 339 -2.5 63.2 -5.4 6.23 *** 

R Hipp 165 19.5 -13.8 -23.5 5.45 *** 

L Post Cent Gyr 154 -63 -8.25 18.8 4.51 *** 

R LOC 137 27.8 -82.5 46 5.17 *** 

L Hipp 112 -24.5 -22 -17.5 5.58 *** 

L LOC 97 -38.2 -85.2 37 4.26 *** 

L Frontal Pole 93 -49.2 44 9.73 5.44 *** 

C Opercular Cortex 78 -38.2 -2.75 18.8 5.46 *** 

Occip Fusiform 76 -16.2 -77 -11.4 3.93 *** 

ITG 69 -57.5 -55 -14.5 4.85 ** 

L SFG 66 -24.5 30.2 49.1 5.03 ** 

L OFC 66 -38.2 38.5 -11.4 5.17 ** 

R LOC 57 44.2 -63.2 3.68 4.75 ** 

L Occip Pole 48 -13.5 -93.5 24.9 4.28 * 

L LOC 47 -54.8 -74.2 12.8 4.74 * 

L Caudate 39 -19 5.5 24.9 4.14 * 

L Occip Pole 37 -24.5 -85.2 46 4.23 * 

R Precentral Gyrus 29 22.2 -19.2 64.2 4.04 * 

R OFC 26 27.8 38.5 -11.4 4.18 * 

Note. All statistics are corrected for multiple comparisons using FLS’s FLAME 1 with standard cluster forming threshold of Z > 

3.1 and cluster significance at p < 0.01, *** p < 0.001, ** p < 0.01, * p < 0.05, # p < 0.10. 

 

 

 

 

 

 

 

 

 

 



Table S8: Negative correlations of prediction error with neural activation 

Region cluster size (voxels) X (mm) Y (mm) Z (mm) Z-stat max 

ACC/SFG 1639 0.25 13.8 64.2 6.18 *** 

R Insula/IFG 1170 52.5 19.2 -2.37 6.84 *** 

R TPJ 524 60.8 -55 30.9 5.58 *** 

L Insula/IFG 402 -38.2 22 -8.42 7.18 *** 

R STG 340 55.2 -22 -8.42 7.23 *** 

L TPJ 184 -63 -46.8 37 5.3 *** 

R Caudate 123 11.2 13.8 12.8 5.01 *** 

L Caudate 63 -13.5 2.75 9.73 4.59 ** 

L STG 60 -52 -27.5 -5.4 5.01 ** 

PCC 35 5.75 -33 3.68 4.1 * 

Temporal Pole 33 52.5 8.25 -20.5 4.5 * 

L DLPFC 30 -41 22 37 4.01 * 

Precuneus  29 0.25 -77 12.8 4.37 * 

L Frontal Pole 29 -30 57.8 21.8 3.86 * 

Precuneus 29 -10.8 -77 12.8 4.02 * 

Note. All statistics are corrected for multiple comparisons using FLS’s FLAME 1 with standard cluster forming threshold of Z > 

3.1 and cluster significance at p < 0.01, *** p < 0.001, ** p < 0.01, * p < 0.05, # p < 0.10. 

 

 

Table S9: Positive correlations of  expected utility with neural activation 

Region 

 

cluster size (voxels) X (mm) Y (mm) Z (mm) Z-stat max 

VMPFC 111 5.75 55 -11.4 4.79 *** 

VS 51 0.25 16.5 -5.4 4.53 * 

STG 32 63.5 5.5 -5.4 4.34 * 

Note. All statistics are corrected for multiple comparisons using FLS’s FLAME 1 with standard cluster forming threshold of Z > 

3.1 and cluster significance at p < 0.01, *** p < 0.001, ** p < 0.01, * p < 0.05, # p < 0.10. 

 

 

  



Table S10: Negative correlations of expected utility with neural activation 

Region cluster size (voxels) X (mm) Y (mm) Z (mm) Z-stat max 

Precuneus 1775 -2.5 -74.2 55.1 5.58 *** 

R Occip Fusiform 703 25 -77 -8.42 6.19 *** 

ACC/SFG 385 5.75 38.5 49.1 5.37 *** 

L Temp Fusiform 338 -38.2 -46.8 -23.5 5.19 *** 

R DLPFC 303 47 11 30.9 5.63 *** 

L IFC 246 -41 2.75 24.9 4.96 *** 

L OFC 218 -30 30.2 -5.4 5.59 *** 

L Thalamus 156 -2.5 -24.8 9.73 4.53 *** 

R Insula 144 33.2 22 3.68 4.63 *** 

L DLPFC 122 -35.5 -2.75 64.2 5.11 *** 

L Caudate 64 -10.8 11 9.73 5.43 ** 

L Frontal Pole 53 -32.8 60.5 3.68 3.74 ** 

R DLPFC  45 44.2 5.5 55.1 4.08 * 

SFG 32 19.5 16.5 67.2 3.96 * 

R Frontal Pole 29 41.5 55 -5.4 4.01 * 

ACC 26 -2.5 -13.8 27.9 3.86 * 

Note. All statistics are corrected for multiple comparisons using FLS’s FLAME 1 with standard cluster forming threshold of Z > 

3.1 and cluster significance at p < 0.01, *** p < 0.001, ** p < 0.01, * p < 0.05. 

 

Table S11: Positive correlations of inequality aversion with neural activation 

Region cluster size (voxels) X (mm) Y (mm) Z (mm) Z-stat max 

L Occip Fusiform 1452 -13.5 -82.5 -5.4 6.14 *** 

L OFC 93 -32.8 24.8 -17.5 4.39 *** 

R Insula  77 30.5 24.8 -5.4 4.99 *** 

Brain Stem 49 11.2 -24.8 -11.4 4.47 ** 

R Caudate 42 8.5 16.5 0.65 4.88 ** 

L VS 35 -5.25 11 -5.4 4.22 ** 

R Occip Fusiform 35 38.8 -71.5 -14.5 3.97 ** 
Note. All statistics are corrected for multiple comparisons using FLS’s FLAME 1 with standard cluster forming threshold of Z > 

3.1 and cluster significance at p < 0.01, *** p < 0.001, ** p < 0.01, * p < 0.05. 

 

III.5 Region of Interest Analysis  

For both GLM2 and GLM3 we utilized a region of interest (ROI) approach. We selected the ventral striatum 

(VS) as an ROI due it it’s consistent association with reward prediction errors (33). In order to avoid biasing 

our results in favor of our choice prediction error GLM (GLM2), we obtained our VS mask independently 

from Neurosynth (34) with the search term “ventral striatum”, and thresholded at 9. We extracted the 



parameter estimates of each participant from with this VS mask, and then submitted the resulting values to 

paired t-tests (see Main Text, Fig 7B). 

Due to the robust activations found in nodes of the punishment and reward networks, we next conducted 

analyses with ROI’s obtained from these previous analyses. Specifically, we isolated regions identified in 

GLM1 (see section III.4) that we reasoned could likewise exhibit differential activations with respect to 

the different components of our expected utility function—i.e., separately for expected gain and (in the 

social condition) inequality aversion (see Main Text, Fig 3A).  

From the reward network we selected the ventromedial prefrontal cortex (VMPFC) and ventral striatum 

(VS), which we hypothesized would differentiate between the different components of our expected utility 

parameter due to their consistent involvement in anticipatory valuation – the VMPFC in particular (14). 

From the punishment network we selected the dorsal anterior cingulate (dACC) and anterior insula, as these 

nodes have been demonstrated to be the most robustly involved in the processing of punishment, including 

punishment in the form of offer rejections in the ultimatum game (14, 35). 

We took the average BOLD activation within each ROI for each participant for both expected gain and 

inequality aversion, and submitted each participant’s averaged BOLD response within the given ROI to 

one-sample t-tests against 0. Results are presented in Table S12.  

Table S12: t-tests on components of expected utility in ROIs 

 t-stats 

 
VMPFC  VS dACC Ant. Insula 

Non-social Expected Gain 2.971 ** 3.350 ** -5.609 *** -5.288 *** 

Social Expected Gain 3.245 ** 5.237 *** -4.768 ***  -7.238 *** 

Inequality aversion 0.504 -0.084 2.242 * 4.829 *** 

 

    

Observations 49 49 49 49 

Note. All t-stats contrasts are against 0. *** p < 0.001, ** p < 0.01, * p < 0.05, # p < 0.10 (two-tailed tests).  

  

III.6 Multivariate Analysis and Supplementary Results 

We employed multi-voxel pattern analysis (MVPA) to examine patterns of neural activity during both the 

decision and feedback time-phases in order to detect subtle differences in neural processing between the 

social and non-social conditions. For each subject we fit a general linear model (GLM) to each trial time-

locked to the time-phase of interest (i.e., for both decision and feedback time-phases). This resulted in a 



single parameter estimate for each trial during each epoch of interest. For each subject, we concatenated 

these parameter estimates together to create a single image file with 288 volumes, each volume 

corresponding to the parameter estimate of a given trial. We then applied a 27-voxel searchlight procedure 

with a linear discriminant analysis (LDA) classifier. A searchlight acts as a traveling region of interest used 

to detect spatially contiguous patterns of activation specific to functional neural structures (36). Each 

subject completed two social and two non-social functional runs, and we therefore conducted a leave-two-

runs-out cross-validation procedure, in which our LDA classifier was trained on two runs (one social and 

one non-social), and then tested on the two independent left-out runs. This resulted in a single accuracy 

map for each subject. The resulting accuracy maps were then concatenated together and tested for 

significance with Monte Carlo boot-strapping with 10,000 permutations with threshold-free cluster 

enhancement (TFCE) (37), family-wise error correct (FWE-corrected) at the whole-brain level with 

threshold of Z > 1.6449 (p < 0.05), implemented in the CoSMoMVPA MATLAB package (4). To maximize 

statistical sensitivity, we created null datasets for significance testing by permuting condition labels. 

Specifically, for each subject we permuted the labels indicating which condition each volume of their image 

file belonged to, and ran the searchlight on said permuted image. This process was repeated 100 times for 

each subject as recommended by Stelzer and colleagues (27) resulting in 100 “null” accuracy maps, 

representing results from randomized data. These data were used as the null data in the group level TFCE 

analysis.  

  



Table S13:  Social vs. non-social during decision-making 

Region cluster size (voxels) X (mm) Y (mm) Z (mm) Z-stat max 

Occip Pole 2342 3 -88 6.7 3.72 *** 

PCC/precuneus 1353 0.25 -19.2 27.9 3.35 *** 

R IFG 1178 55.2 11 24.9 3.35 *** 

R SFG 133 27.8 2.75 55.1 2.66 ** 

dACC 129 -5.25 0 67.2 2.18 * 

R TPJ 41 49.8 -41.2 58.1 1.98 * 

L Putamen 32 -32.8 -2.75 -5.4 2.24 * 

L Insula 17 -32.8 16.5 -11.4 1.9 * 

L STS 17 -60.2 -52.2 15.8 2.05 * 

L TPJ 14 -54.8 -44 61.2 2.1 * 

VS 9 -8 8.25 -8.42 1.82 * 

L STG 8 -46.5 -41.2 9.73 1.94 * 

R TPJ 7 63.5 -38.5 46 2.11 * 

R Post Cen Gyr 6 36 -30.2 52.1 1.73 * 

L LOC 5 -35.5 -77 -2.37 1.67 * 

R LOC 5 38.8 -60.5 40 1.69 * 

Note. All statistics are FWE corrected for multiple comparisons using threshold free cluster enhancement(37) as implemented in 

CoSMoMVPA(4), with threshold of Z > 1.6449 (p < 0.05). *** p < 0.001, ** p < 0.01, * p < 0.05, # p < 0.10. 

 
Table S14:  Social vs. non-social during feedback 

 

Region cluster size (voxels) X (mm) Y (mm) Z (mm) Z-stat max 

Precuneus 102 3 -63.2 24.9 2.46 ** 

Occip Pole 82 11.2 -96.2 24.9 2.45 ** 

dACC 10 -5.25 19.2 33.9 1.95 * 

Occip Pole 7 -5.25 -99 -5.4 1.88 * 

L LOC 6 -32.8 -88 18.8 1.83 * 

Lingual Gyr 5 -13.5 -77 -2.37 1.74 * 

Occip Pole 5 8.5 -90.8 9.73 1.74 * 

Note. All statistics are FWE corrected for multiple comparisons using threshold free cluster enhancement(37) as implemented in 

CoSMoMVPA(4), with threshold of Z > 1.6449 (p < 0.05). *** p < 0.001, ** p < 0.01, * p < 0.05, # p < 0.10. 

  



IV. Experimental Instructions.  

 

IV.1 Screenshots of the Instructions and Stimuli for Behavioral Experiments. This section contains 

screenshots of the instructions provided to participants for our behavioral experiments as well as 

screenshots of experimental stimuli. Because instructions and stimuli for laboratory and online behavioral 

experiments were almost identical, only one set of screenshots are provided.  























 

 



IV.2 Screenshots of the Instructions and Stimuli for Neuroimaging Experiments. In order to make our 

experiment fMRI compatible, we made some changes to the stimuli. Below are images from the fMRI 

compatible experiment.  
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